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Abstract
The concept of physical twin observables (PTO) for bipartite quantum states,
introduced and proved relevant for quantum information theory in recent work,
is substantially simplified. The relation of observable and state is studied in
detail from the point of view of coherence entropy. Properties of this quantity
are further explored. It is shown that, besides for pure states, also for a class
of mixed states, quantum discord (measure of entanglement) can be expressed
through the coherence entropy of a PTO complete in relation to the state.

PACS numbers: 03.65.Bz, 03.67.−a, 03.67.Hk

1. Introduction

This study hinges on two concepts, that of coherence entropy and that of twin observables.
To understand what coherence is, one starts with the lack of it. One considers a quantum
state (density operator) ρ and a discrete observable (Hermitian operator) in spectral form with
distinct eigenvalues A = ∑

l alPl (possible al = 0 included) because one deals with a relative
concept: observable in relation to state. Let B be another observable. Its average in ρ is

〈B〉 = Tr(ρB) =
∑

l

Tr(PlρB). (1)

The question is when is this a mixture of separate contributions from the eigenvalues al

of A, i.e. ∑
l

Tr[(PlρPl)B] =
∑

l

wl〈B〉l (2a)

where

∀l : wl ≡ Tr(PlρPl) (2b)

are the statistical weights, and, for wl > 0,

〈B〉l ≡ Tr[(PlρPl/wl)B]. (2c)
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It is easy to convince oneself that putting the analogous question in terms of the classical
counterparts, the answer is ‘always’. One says that in classical physics there is no coherence,
i.e. coherence is an unknown concept there.

Further, since [A,B] = 0 implies ∀l : [Pl, B] = 0, it is easy to see that (2a) is valid in
this case. One says that coherence never shows up with respect to an observable B compatible
(commuting) with the observable A at issue.

To put the above question in a more specific form, we ask when (1) is equal to (2a) for
all observables B that are incompatible with A. One can prove that this is the case if and only
if [A, ρ] = 0, i.e. in the case of compatibility of observable and state [1].

Thus, if A and ρ are incompatible, and only then, (1) is not equal to (2a) for all B, and
this is called coherence of A in relation to ρ.

Experimentally coherence is usually observed as interference, i.e. a cooperative
contribution of two or more eigenevents (eigenprojectors) Pl of A in the average of some
observable B incompatible with A. (Note that in the case of events, average and probability
are the same thing.)

The best-known example of interference is that on two slits. In a previous paper [2],
I have given a detailed description of it along the lines of this introduction (with the additional
intricacy of an evolution between passage of the two-slit screen and arrival at the detection
screen).

The next question is how to find a quantity that would be the amount of coherence of A

in ρ. On intuitive grounds one can say that it must satisfy three requirements.

(i) It must be a function of A and ρ.
(ii) In the case of compatibility [A, ρ] = 0 it must be zero, otherwise it must be positive.

Some of the eigenevents Pl of A may be compatible with ρ, hence part of the average of
B may be expressible as an average of separate contributions. This part is irrelevant
for coherence, because the latter is negation of such a mixture. Hence, the third
requirement is

(iii) The desired quantity should depend only on those eigenevents Pl of A that are not
compatible with ρ, and not at all on those that are.

In a previous paper [3], the amount of coherence of A in ρ was denoted by EC(A, ρ) and
defined as

EC(A, ρ) ≡ S

(∑
l

PlρPl

)
− S(ρ) (3)

where S(ρ) is the von Neumann entropy of the quantum state ρ. The quantity EC(A, ρ) is
the (nonnegative) entropy increase in ideal measurement of A in ρ. It is called the coherence
entropy. It satisfies the first two intuitive requirements. It also satisfies the third one as proved
below (theorem 2).

Physical twin observables (PTO) were shown to be relevant [3] for important questions
in quantum information theory [4, 5]. In particular, PTO can be made use of both for defining
the quasi-classical or subsystem-measurement-accessible part and the purely quantum part,
i.e. the amount of entanglement or the quantum discord [6] in a general bipartite pure state.

The definition of PTO applies to two opposite-subsystem observables (Hermitian
operators) A1 and A2 that have a special relation to a given composite (1 + 2)-system state
(density operator) ρ12. The definition in [3] begins with the (very strong) requirement of
compatibility (commutation) of the observables (operators) with the corresponding subsystem
states (reduced density operators):

[As, ρs] = 0 s = 1, 2 (4)
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where, of course, the subsystem states are ρs ≡ Trs ′ρ12, s, s
′ = 1, 2, s �= s ′, and ‘Trs ′ ’ denotes

the partial trace over subsystem s ′. Further, a bijection between the detectable eigenvalues of
A1 and A2 is required such that if P i

s are the eigenprojectors corresponding to the ith detectable
pair of eigenvalues, s = 1, 2, connected by the bijection, then the following so-called algebraic
condition

∀i : P i
1ρ12 = P i

2ρ12 (5a)

has to be satisfied. An equivalent condition is the measurement-theoretic one claiming that

∀i : P i
1ρ12P

i
1 = P i

2ρ12P
i
2 . (5b)

(There are two more equivalent conditions [3] that will not be needed in this paper.)
In section 2 it is demonstrated that the expounded definition of PTO can be (substantially)

simplified. In section 3 the concept of coherence entropy is studied by clarifying the basic
necessary property: that the given observable should be ‘discrete in relation to’ the given
state. Further, some well-known entropy inequalities are put in the form of an equality ((16)
below) and displayed on a diagram (see figure 1). In section 4 the part of the spectrum of the
observable that is actually responsible for determining the coherence entropy is singled out.
Thus, the third intuitive requirement for coherence entropy is shown to be valid. In section 5
the partial order ‘finer–coarser in relation to’ among observables is studied and the concept of
‘complete in relation to’ a given state is investigated.

In section 6 incompatibility of observable and state that is exclusively due to quantum
correlations is discussed. In section 7, a class of mixed states is identified in which the
coherence entropy of physical twin observables can be viewed as constituting the quantum
discord (the entire amount of entanglement). In section 8 the main results are summed up.

2. Redundancy of compatibility as a requirement

Let ρ12 be a bipartite state. We call the eigenvalues of observables that have positive probability
in ρ12 detectable ones.

Theorem 1. Let A1 and A2 be opposite-subsystem observables, and let there exist a bijection
between all detectable eigenvalues of A1 and all those of A2 such that, upon using the common
index i for the pair of corresponding eigenvalues, the algebraic condition (5a) is valid. Finally,
let the total probability of detectable eigenvalues of A1 and separately of A2 be 1. Then the
compatibility (4) is a consequence.

In proving the theorem we use the known lemma stating the following equivalence between
two expressions of one and the same elementary relation between an event (projector) P and
a state ρ expressing certainty:

Tr ρP = 1 ⇔ Pρ = ρ (6)

(cf [7] if proof is desired).

Proof. Let
{
as

i : ∀i
}
, s = 1, 2 denote the detectable eigenvalues of A1 and of A2, respectively.

Let, further,
{
P i

s : ∀i
}

be the corresponding eigenprojectors. (We refer to them as detectable
ones.) Finally, let Ps ≡ ∑

i P
i
s , s = 1, 2. We write the observables in the form

As =
∑

i

as
i P

i
s + P ⊥

s AsP
⊥
s s = 1, 2 (7)

where P ⊥
s denotes the orthocomplementary projector of Ps .
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To prove commutation of the undetectable parts with ρs , we utilize the second relation
in (6): (

P ⊥
s AsP

⊥
s

)
ρs = (

P ⊥
s AsP

⊥
s

)
(Psρs)

hence (
P ⊥

s AsP
⊥
s

)
ρs = 0 = ρs

(
P ⊥

s AsP
⊥
s

)
.

(The last equality is due to adjoining the preceding one.)
Commutation of the detectable parts can be proved as follows: making use of (5a) and of

its adjoint, one has

P i
s ρs = P i

s Trs ′ρ12 = Trs ′
[
P i

s ρ12
] = Trs ′

[
P i

s ′ρ12
] = Trs ′

[
ρ12P

i
s ′
] = Trs ′

[
ρ12P

i
s

] = (Trs ′ρ12)P
i
s

= ρsP
i
s s, s ′ = 1, 2 s ′ �= s.

Hence, in view of (7), the validity of (4) is established. �

Thus, one can say that two opposite-subsystem observables A1 and A2 are physical twin
observables with respect to a bipartite state ρ12 if the conditions of theorem 1 are valid.

It may be the case that one has physical twin observables such that the detectable
eigenvalues that correspond to each other via the mentioned bijection are equal for all values
of i, then (5a) is replaceable by the stronger (and more concise) algebraic relation

A1ρ12 = A2ρ12. (8)

This relation by itself implies all the rest of the properties of the observables in relation to ρ12

[8, 9]. (Cf [3] for the properties not mentioned in this paper.)
It is noteworthy that a comparison of (8) and (5a) reveals that each two corresponding

detectable eigenprojectors P i
1 , P

i
2 satisfy the stronger algebraic relation (8). Hence, as proved

in [9], they are compatible with the corresponding subsystem states, i.e. (4) is valid, mutatis
mutandis, for them. Then, a glance at (7) makes it clear that for the validity of (4) one actually
needs only to prove compatibility of the undetectable parts

(
P ⊥

1 A1P
⊥
1

)
,
(
P ⊥

2 A2P
⊥
2

)
with the

corresponding subsystem states (e.g., as done in the proof of the theorem).
In the special case characterized by (8), A1, A2 should be called algebraic twin

observables. They were studied in detail in previous work [8, 9]. There such observables were
called simply ‘twin observables’. In a more recent investigation [3], this practical terminology
was utilized for physical twin observables as it should be in view of the fact that the latter,
being more general, can be expected to have a wider scope of application.

As was mentioned in the introduction, in a recent study [3] the amount of purely quantum
correlation or entanglement (or quantum discord) of an arbitrary given pure state |�〉12 was
shown to be ‘carried’ by a specially constructed pair of twin observables. The way the
quantum discord is ‘carried’ is expressed via the notion of coherence entropy. This result
requires generalization.

In the next three sections we ignore bipartite states and twin observables for the time
being, and make a precise analysis of the concept of coherence entropy (to be able to apply it
to PTO).

3. Observables that are discrete in relation to a state

Let us rewrite the spectral form of a given discrete observable A = ∑
l alPl (distinct

eigenvalues) indexing the eigenvalues and eigenevents that are detectable in a given state
ρ by i, and those that are undetectable by m:

A =
∑

i

aiPi +
∑
m

amPm. (9)
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Lemma 1. Only the detectable eigenevents contribute to the coherence entropy

EC(A, ρ) = EC

((∑
i

aiPi

)
, ρ

)
(10)

and the event P defined as P ≡ ∑
i Pi is certain in ρ.

Proof. It is easy to see (by using the orthocomplement) that the following claim is an
equivalent form of the relations in (6): an event P is undetectable in a state ρ if and only if
Pρ = 0. Hence, substituting 9 in (3), (10) immediately ensues. Further, for the same reason,

1 = Tr

[(∑
l

Pl

)
ρ

]
= Tr

[(∑
i

Pi

)
ρ

]
.

�

Lemma 1 enables one to see how widely one can extend the set of all discrete observables
to obtain the widest set of elements for which the coherence entropy concept is applicable.
(This widest set was introduced in an ad hoc manner [3].)

Every observable A can be written in the (partly) spectral form

A =
∑

i

aiPi + P ⊥AP ⊥ (11)

(the ai are distinct detectable eigenvalues, possible ai = 0 included; i enumerates all of them).
Naturally, the singled out detectable discrete part (the first term on the RHS) may be zero.

Definition 1. Let A be an observable and ρ a state such that the total probability of detectable
eigenvalues of A in ρ is one. We say that A is discrete in relation to ρ. Further, we define the
coherence entropy EC(A, ρ) for such an observable as

EC(A, ρ) ≡ EC

((∑
i

aiPi

)
, ρ

)
. (12)

(Note that on the RHS we have the known coherence entropy of a discrete observable, whereas
on the LHS we define this for A that need not be discrete in the absolute sense.)

To understand what class of observables we are dealing with, we make some elaboration.

Lemma 2. If a general observable A and a state ρ are given, the total probability of the
detectable eigenvalues of the former in the latter is one if and only if enumerating all detectable
eigenvalues by i, the projector P (≡ ∑

i Pi) projects onto a subspace that contains the range
of ρ.

If Q denotes the range projector of ρ, then the algebraic form of the (geometric)
characteristic condition in the lemma is

PQ = Q. (13)

This is a further known characteristic condition (cf (6)) for an event being certain in a state.
(For the reader’s convenience, it is proved in appendix A.)

Lemma 3. If [A, ρ] = 0, then also [A,Q] = 0, and the reducee A′ of A in the range R(Q)

is discrete (in the absolute sense). Its eigenvalues are precisely the detectable eigenvalues
{ai : ∀i} of A. The observable A is discrete in relation to ρ.

Proof. Since A commutes with all eigenprojectors of ρ, and Q = ∑
k Qk (sum of all

eigenprojectors of ρ corresponding to positive eigenvalues), also [A,Q] = 0 is valid. On
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account of ∀k : [A,Qk] = 0, A reduces in each eigensubspace R(Qk) of ρ. Since these
are finite dimensional (the positive eigenvalues of ρ add up to 1), A′ is discrete. Since by
definition ∀i : 0 < Tr(Piρ) = Tr[(PiQ)ρ], one has PiQ �= 0. Hence, the reducee of
PiQ in R(Q) is a nonzero projector. It is the eigenprojector of A′ corresponding to the
eigenvalue ai . Thus, each detectable eigenvalue of A is an eigenvalue of A′. On the other
hand, each eigenvalue of A′ (it is, of course, also an eigenvalue of A) is detectable because the
reducee of ρ in R(Q) is nonsingular (see appendix B for this implication). Finally, the sum∑

i Tr Piρ = ∑
i Tr[(PiQ)ρ] must be 1 because, designating by primes the reducees in R(Q),

one has Tr[(PiQ)ρ] = Tr[(PiQ)′ρ ′] and
∑

i Tr[(PiQ)′ρ ′] = Tr ρ ′ = Tr ρ = 1. Hence, A is
discrete in relation to ρ as claimed. �

Henceforth and throughout this paper when a state is given by an observable we mean one
that is discrete in relation to the state (or otherwise we will say that we have a more general
observable).

In general, the spectral part P ⊥AP ⊥ (see (11)) may contain a continuous spectrum if
the null space of ρ is infinite dimensional. (If the null space is finite dimensional, then the
observable must be discrete in the absolute sense). In the rest of this section we expound
a basic relation of the coherence entropy EC(A, ρ) to its ‘neighbouring’ entropies. It is an
immediate consequence of the following fundamental inequalities. (They have become of
classical value in quantum entropy theory.) Let ∀i : pi ≡ Tr(Piρ). Then [10]∑

i

piS(PiρPi/pi) � S(ρ) (14a)

S(ρ) � S

(∑
i

PiρPi

)
. (14b)

One has equality in the first inequality if and only if ∀i : S(PiρPi/pi) = S(ρ). The second
inequality reduces to an equality if and only if one has compatibility: ∀i : [Pi, ρ] = 0.

Since
∑

i PiρPi is an orthogonal mixture, the mixing property of entropy [11] applies

S

(∑
i

PiρPi

)
= H(pi) +

∑
i

piS(PiρPi/pi) (15a)

where

H(pi) ≡ −
∑

i

pi ln pi (15b)

is the Shannon entropy of the probability distribution {pi : ∀i}. It is often called the mixing
entropy. But for our purposes we view it as the entropy of the observable A in ρ, and denote it
by S(A, ρ). This is a well-known concept (cf, e.g., [12]). It equals the amount of information
that one can gain about A when measuring it in ρ.

We can thus rewrite (15a) as

S(A, ρ) = EC(A, ρ) +

(
S(ρ) −

∑
i

piS(PiρPi/pi)

)
. (16)

It is noteworthy that EC(A, ρ) is nonnegative on account of (14b), and the second term on
the RHS of (16) is also nonnegative due to (14a). (Relation (16) is the same as relation (20)
in [3].)

It is obvious from (16) that

EC(A, ρ) � S(A, ρ). (17)
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S(
∑

i

PiρPi)

↑ ↑

EC(A, ρ)

S(A, ρ) ↓

S(ρ)

↓
∑

i

piS(PiρPi/pi)

0

Figure 1. Entropy level diagram.

In other words, when measuring A in ρ, the amount of obtainable information on A is larger
or equal to the entropic ‘price’ that one has to pay (for measuring an incompatible observable).

In case of compatibility [A, ρ] = 0, (16) reduces to

S(A, ρ) = S(ρ) −
∑

i

piS(PiρPi/pi).

Since this is the mixing property of entropy applied to the orthogonal decomposition
ρ = ∑

i PiρPi , one has S(A, ρ) = 0 if and only if ∀i : PiρPi/pi = ρ (a strengthened
from of the characteristic conditions for equality in (14a)).

Equality (16) is displayed in the self-explanatory entropy level diagram (see figure 1) with
vertical distances representing the entropy quantities at issue.

4. The spectral part of the observable that determines the coherence entropy

Let a state ρ be given, and let us consider the detectable eigenprojectors Pi of a given observable
A. Some of these may commute with ρ. Following the terminology used in [13], we call the
eigenprojectors that do not commute with ρ weak ones; those that do commute, we call strong
ones. For further analysis we enumerate the weak eigenprojectors by j , and the strong ones
by k. Further, we write the spectral form of A as consisting, in general, of a weak component
observable Aw, a strong component observable Ast and the irrelevant part with respect to ρ:

A = Aw + Ast + P ⊥AP ⊥ (18a)

where

Aw ≡
∑

j

ajPj (18b)

and

Ast ≡
∑

k

akPk. (18c)

Let us further define the weak probability pw, and, for the case when it is nonzero, the
weak component state ρw

pw ≡ Tr





∑

j

Pj


 ρ


 (19a)
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ρw ≡

∑

j

Pj


 ρ


∑

j

Pj


 /

pw. (19b)

Then we have the following orthogonal decomposition of the state:

ρ = pwρw + (1 − pw)ρst (20)

where the strong component state is given by the orthogonal mixture of states

ρst ≡
∑

k

{[pk/(1 − pw)]ρk} (21a)

and ∀k :

pk ≡ Tr(Pkρ) (21b)

ρk ≡ PkρPk/pk = Pkρ/pk. (21c)

Definition 2. In the three cases when pw = 0, pw = 1 and 0 < pw < 1 we say that the
observable A is strong, weak and intermediary, respectively, regarding ρ.

If ρ is a pure state, then every observable is weak with respect to it (with the exception of
a constant multiplying a projector that does not change this state vector). If, on the other hand,
one has [A, ρ] = 0, which is equivalent to the property that all detectable eigenprojectors of
A are strong, then A is strong.

Remark 1. The eigenprojectors Pk are called strong because each of them ‘cuts’ a separate
component state ρk ‘out of’ ρ (cf (21c)), whereas the weak eigenprojectors Pj ‘cut out’ a
component state only in cooperation with all of them (cf (19b)).

Theorem 2. The coherence entropy of A is equal to the coherence entropy of the weak
component observable in the weak component state multiplied by the weak probability:

EC(A, ρ) = pwEC(Aw, ρw). (22)

Proof. Definition (12) with (3) and (20) with definitions (19a), (19b) and (21a)–(21c) imply

LHS(22) = S

(
pw

∑
i

(PiρwPi) + (1 − pw)
∑

i

(PiρstPi)

)
− S (pwρw + (1 − pw)ρst )

= S


pw

∑
j

(PjρwPj ) + (1 − pw)ρst


 − S(pwρw + (1 − pw)ρst ).

Since both entropies are taken of orthogonal state decompositions, one can apply the mixing
property of entropy, and obtain

LHS(22) =

H(pw) + pwS


∑

j

PjρwPj


 + (1 − pw)S(ρst )




− [H(pw) + pwS(ρw) + (1 − pw)S(ρst )].

(H(pw) being the Shannon entropy of the probability distribution {pw, (1 − pw)}). After
cancellations the RHS(22) is obtained. �
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5. Finer observables and complete ones in relation to a state

Now we turn to a special relation of two observables with respect to a given state.

Definition 3. Let ρ be a given state, and let A and A′ be two observables. Let further the
detectable eigenprojectors of A′ further decompose those of A:

∀i : Pi =
∑

i ′
Pi,i ′ (23)

where {Pi,i ′ : ∀i, i ′} are eigenprojectors of A′ corresponding to its distinct eigenvalues
{a′

i,i ′ : ∀i, i ′}. Then A′ is finer than or a refinement of A and the latter is coarser than

or a coarsening of the former in relation to ρ and we write A′ ρ

� A. If at least one of the sums
in (23) is nontrivial in the sense that it has at least two detectable terms on the RHS, then A′

is strictly finer than A etc in relation to ρ, and we write A′ ρ
> A. Otherwise, A′ and A are

equal in relation to ρ, and we write A′ ρ= A.

Lemma 4. If two observables A′ and A are such that the former is a refinement of the latter
in relation to the state ρ, then the entropy of the latter in ρ does not exceed that of the former

A′ ρ

� A ⇒ S(A′, ρ) � S(A, ρ). (24)

The entropies are equal if and only if A′ ρ= A.

Proof. Evidently, (23) implies ∀i : pi = ∑
i ′ pi,i ′ , where pi ≡ Tr(Piρ) and pi,i ′ ≡ Tr(Pi,i ′ρ).

One can write

pi,i ′ =
∑
m

pm[δm,i(pi,i ′/pi)]

where m takes on the same values as i, and pm ≡ Tr(Pmρ). Denoting by p
(m)
i,i ′ the

probability distributions [δm,i(pi,i ′/pi)] on the set of all pairs (i, i ′), one has disjointness

p
(m)
i,i ′ p

(m′)
i,i ′ = δm,m′

(
p

(m)
i,i ′

)2
. Hence, we are dealing with a disjoint decomposition of the

probability distribution pi,i ′ (the classical discrete counterpart of an orthogonal decomposition
of a quantum state), and we can apply the mixing property resulting in the following relation
between the Shannon entropies (cf (15b)):

H(pi,i ′) = H(pi) +
∑
m

pmH
(
p

(m)
i,i ′

)
.

On account of the definition of the entropy of an observable in a state (see the text beneath
(15b)), the last relation can be written as

S(A′, ρ) = S(A, ρ) +
∑
m

pmH
(
p

(m)
i,i ′

)
. (25)

The nonnegativity of the last term bears out the first claim. If A′ ρ
> A, at least one of the sums

in (23) is nontrivial, e.g., for i = m. Then at least two pairs of indices (m, i ′), (m, i ′′) i ′ �= i ′′

enumerate detectable eigenvalues of A′; hence, also the decomposition of the corresponding
probability is nontrivial, and H

(
p

(m)
i,i ′

)
is positive. This proves the second claim. �

Theorem 3. If A′ is a refinement of A in relation to a given state ρ, then the coherence
entropy of the latter does not exceed that of the former in this state:

EC(A′, ρ) � EC(A, ρ). (26)
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The two entropies are equal if and only if the observable A′ is compatible with the state∑
i PiρPi , i.e. [

A′,
∑

i

PiρPi

]
= 0. (27a)

The coherence entropy of A′ is strictly larger than that of A (both in ρ) if and only if there
exists a nontrivial sum in (23), and one has for the corresponding value of i:

∃i ′ �= i ′′ : Pi,i ′ρPi,i ′′ �= 0. (27b)

Proof. Measurement of A′ in an ideal way changes both ρ and the state
∑

i PiρPi into
one and the same state

∑
i

∑
i ′ Pi,i ′ρPi,i ′ . Hence, S

( ∑
i

∑
i ′ Pi,i ′ρPi,i ′

)
� S

( ∑
i PiρPi

)
(cf (14b)). Inequality (26) then follows (cf (12) and (3)). Criterion (27a) is a consequence
of that for equality in (14b). The last claim follows from the facts that (27a) is equivalent to∑

i

∑
i ′ Pi,i ′ρPi,i ′ = ∑

i PiρPi , and that (27b) is the negation of this. �

Now we turn to exploring the last term in (16) with respect to comparison of A and a
finer obseravable A′ in relation to ρ. Though the probabilities pi have to be positive due to
the definition of the indices i, this is not the case with pi,i ′ . If this probability is zero, the
corresponding state and its entropy are not defined. But, for simplicity, we assume, as is
usually done in such cases, that pi,i ′S(Pi,i ′ρPi,i ′/pi,i ′) is simply zero.

Lemma 5. If A′ is a refinement of A in ρ, then the entropy decrease, i.e. the second term on
the RHS of (16), corresponding to A′, is larger than or equal to that corresponding to A:{

S(ρ) −
∑

i

∑
i ′

[pi,i ′S(Pi,i ′ρPi,i ′/pi,i ′)]

}
�

{
S(ρ) −

∑
i

[piS(PiρPi/pi)]

}
. (28)

One has equality if and only if

∀i, i ′, pi,i ′ > 0 : S(Pi,i ′ρPi,i ′/pi,i ′) = S(PiρPi/pi).

This condition is satisfied when A′ ρ= A. But it may be valid also for A′ ρ
> A.

Proof. One has

LHS(28) − RHS(28) =
∑

i

[
pi

[
S(PiρPi/pi)

−
∑

i ′
((pi,i ′/pi)S[Pi,i ′(PiρPi/pi)Pi,i ′/(pi,i ′/pi)])

]]

since Pi,i ′ = Pi,i ′Pi (cf (23)). Each term in the sum
∑

i is nonnegative on account of (14a).
The last claim follows from the equality conditions in (14a). �

Remark 2. If A′ ρ
> A but [A′,

∑
i PiρPi] = 0, then S(A′, ρ) > S(A, ρ), but EC(A′, ρ) =

EC(A, ρ). In this case the claimed criterion for equality in lemma 5, i.e. for lack of
enlargement in the entropy decrease, is not valid. Namely, ∀i : PiρPi/pi = ∑

i ′[(pi,i ′/pi)

(Pi,i ′ρPi,i ′/pi,i ′)], and the average entropy in a mixture is always less than that of the mixture
itself unless the mixture is trivial. And this is not the case for at least one value of i.

Definition 4. If A′ ρ

� A implies A′ ρ= A, i.e. if A does not have a nontrivial refinement in
relation to the given state ρ, then we say that A is complete in relation to ρ.
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Remark 3. Evidently, A is complete in relation to ρ if and only if further decomposition is
not possible, i.e. for each detectable eigenprojector Pi of A there exists a state vector |i〉 such
that

PiρPi/[Tr(Piρ)] = |i〉〈i|. (29)

Lemma 6. If an observable A and a state ρ in relation to which the former is discrete are
compatible, i.e. [A, ρ] = 0, and if Q denotes the range projector of ρ, then the observable is
complete in relation to the state if and only if for each value of i there exists a state |i〉 such
that PiQ = |i〉〈i|.

Proof. On account of the commutation, one can choose a common eigenbasis of A and ρ.
Let us write its subbasis spanning R(Q) as {|i, k〉 : ∀i,∀k}, where ∀i : Pi |i, k〉 = |i, k〉.
Denoting the corresponding eigenvalues of ρ by {ri,k : ∀i,∀k}, we can write the spectral form
PiρPi = ρ(PiQ) = ∑

k ri,k|i, k〉〈i, k|. It is now obvious that one has completeness (cf (29))
if and only if for each value of i there is only one value of k. Then |i〉 ≡ |i, k〉. �

Remark 4. Since in the case of compatibility of A and ρ one has R(PiQ) = R(Pi)∩R(Q),
the projector |i〉〈i| is the reducee (PiQ)′ of PQ in R(Q). Therefore, an equivalent form of the
criterion in lemma 6 is completeness (in the absolute sense) of the reducee A′ of A in R(Q).

6. Correlation incompatibility

Now we turn to bipartite states.

Lemma 7. A subsystem observable A1 ⊗ 1 is discrete in relation to a state ρ12 if and only if
so is A1 in relation to ρ1 (≡ Tr2ρ12).

Proof. It follows immediately from ∀i : Tr
(
P i

1ρ12
) = Tr

(
P i

1ρ1
)
. �

Let us introduce a general concept.

Definition 5. When a first-subsystem observable A1 and a bipartite state ρ12 are related so
that [A1, ρs] = 0, s = 1, 2 and [A1, ρ12] �= 0, and the observable is discrete in relation to
ρ1, then we say that we have a case of correlation incompatibility. The same term will be used
for the symmetric case with a second-subsystem observable A2.

Intuitively one expects that in this case the very incompatibility [As, ρ12] �= 0, being only
due to the correlations in ρ12, should, through its amount, play a role in understanding
the correlations contained in ρ12, s = 1 or 2. Therefore, we investigate the relation
between the coherence entropy EC(A1, ρ12) and the von Neumann mutual information
I (ρ12) ≡ S(ρ1) + S(ρ2) − S(ρ12).

Theorem 4. In the case of correlation incompatibility, one has

I (ρ12) = EC(As, ρ12) + I

(∑
i

P i
s ρ12P

i
s

)
s = 1 or 2 (30)

i.e. the coherence entropy is a term in the von Neumann mutual information of ρ12 (together
with another possible nonnegative term).
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Proof. One has always (in obvious notation) S12 = S1 − I12 + S2. We assume that s = 1. In
our case

∑
i P

i
1ρ1P

i
1 = ρ1, hence

EC(A1, ρ12) ≡ S

(∑
i

P i
1ρ12P

i
1

)
− S(ρ12)

=
[
S

(∑
i

P i
1ρ1P

i
1

)
− I

(∑
i

P i
1ρ12P

i
1

)
+ S

(
Tr1

[(∑
i

P i
1

)
ρ12

])]

− [S(ρ1) − I (ρ12) + S(ρ2)]

= I (ρ12) − I

(∑
i

P i
1ρ12P

i
1

)

because,
∑

i P
i
1 being a certain event in ρ12, one has

(∑
i P

i
1

)
ρ12 = ρ12 (cf (6)). If s = 2, the

proof is symmetrical. �

Thus, the above intuitive expectation turned out to be correct. But it is not clear if the
coherence entropy at issue belongs to the amount of quasi-classical correlation or to that of
entanglement in ρ12. The latter seems more likely because coherence and incompatibility are
unknown in classical physics.

7. Back to physical twin observables

Let us start by generalizing the mentioned result from [3] that a tailor-made pair of physical
twin observables (PTO) A1, A2 for an arbitrary given bipartite pure state ρ12 ≡ |�〉12〈�|12

‘carries’ the amount of entanglement (quantum discord) via the coherence entropy of A1 (or
of A2) in |�〉12.

Lemma 8. If A1, A2 are PTO for |�〉12 and A1 is complete in relation to ρ1, the state
(reduced density operator) of subsystem 1, then EC(A1, |�〉12) = S(ρ1), and thus these PTO
‘carry’ the entire amount of entanglement, i.e. the quantum discord in |�〉12.

Remark 5. Bearing in mind that for PTO A1 and ρ1 are compatible (cf theorem 1) A1 is
complete in relation to ρ1 if and only if its reducee A′

1 in R(Q1) (Q1 being the range projector
of ρ1) is complete in the absolute sense (cf remark 4).

Proof of lemma 8. This is obtained by reducing this case to the ‘tailor-made’ one from [3].
Namely, the commutation [A1, ρ1] = 0 enables one to choose the eigen-subbasis of ρ1 that
spans its range as an eigen-subbasis also of A1. Expansion of |�〉12 in this basis then gives
the Schmidt biorthogonal form, and A1, A2 have (the ‘tailor-made’) spectral forms as in [3].

�

We now go to a general bipartite state ρ12.
As is well known, there is no entropy increase in ideal measurement of the observable at

issue if and only if the observable and state are compatible. Since for PTO (4) is valid, we
have a case of correlation incompatibility if A1 has a nonzero weak component in relation
to ρ12.

Further investigation requires a general result concerning the so-called biorthogonal
mixtures of bipartite states. Let us define this concept.
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Definition 6. Let
{
P k

1 : ∀k
}

and
{
Qk

2 : ∀k
}

be any sets of orthogonal projectors for the first
and the second subsystem, respectively, with common enumeration, and let

∑
k pkρ

k
12 be a

mixture such that ∀k : ρk
12 = P k

1 ρk
12Q

k
2. Then the mixture is said to be biorthogonal.

Now we can prove a general result. It is the analogue of the mixing property of entropy.
It can be called the mixing property of von Neumann mutual information.

Lemma 9. Let ρ12 = ∑
k pkρ

k
12 be a biorthogonal mixture. Then,

I (ρ12) = H(pk) +
∑

k

pkI
(
ρk

12

)
. (31)

Thus the von Neumann mutual information is the sum of the mixing entropy and the average
von Neumann mutual information of the component states in the mixture.

Proof. By definition I (ρ12) = S(ρ1) + S(ρ2) − S(ρ12). The mixture entails ρs = ∑
k pkρ

k
s ,

s = 1, 2, where ∀k : ρk
s ≡ Trs ′ρk

12, s, s
′ = 1, 2, s �= s ′. Since, besides the composite mixture,

also both subsystem mixtures are orthogonal, one has three mixing properties of entropy:
S(ρ12) = H(pk) +

∑
k pkS

(
ρk

12

)
, S(ρs) = H(pk) +

∑
k pkS

(
ρk

s

)
, s = 1, 2. Substituting the

three entropy decompositions in the above definition of mutual information, one obtains the
claimed relation (31). �

Theorem 5. If A1 and A2 are physical twin observables for ρ12, then

I (ρ12) = S(As, ρ12) + EC(As, ρ12) +
∑

i

piI
(
ρi

12

)
s = 1, 2 (32a)

where

∀i : ρi
12 ≡ P i

1ρ12P
i
1

/
pi = P i

2ρ12P
i
2

/
pi (32b)

and
∑

i aiP
i
s is the detectable part of As,∀i : pi ≡ Tr

(
ρ12P

i
s

)
, s = 1, 2. Thus, both

the entropy and the coherence entropy of As in ρ12 are parts of the von Neumann mutual
information. Besides, S(A1, ρ12) = S(A2, ρ12) and EC(A1, ρ12) = EC(A2, ρ12).

Proof. The last term in relation (30) is the mutual information of a biorthogonal mixture (cf
definition 6 and (5b)). Applying the mixing property of mutual information (lemma 9) to it,
the claimed relation (32a) is immediately derived because H(pi) = S(As, ρ12). The entropies
of A1 and A2 are equal because they are both given by H(pi). Also the coherence entropies
coincide due to (5b) (rewritten in (32b)) (cf (12) and (3)). �

Theorem 6. If A1 and A2 are PTO for ρ12 and As are complete in relation to ρs , s = 1, 2,
then

I (ρ12) = S(As, ρ12) + EC(As, ρ12) s = 1, 2. (33)

The entropy S(As, ρ12) of As in ρ12 is the quasi-classical or subsystem-measurement
accessible part, and the coherence entropy EC(As, ρ12) is the quantum discord, i.e. the
amount of entanglement, in the von Neumann mutual information in ρ12.

Proof. By assumption we have relative completeness, i.e. ∀i : QsP
i
s = |i〉s〈i|s , where Qs is

the range projector of ρs (cf lemma 3 and remark 4), s = 1, 2. (Naturally,
[
Qs, P

i
s

] = 0 is a
consequence of (4).) Relations (32b) imply

ρi
s ≡ Trs ′ρi

12 = (|i〉s〈i|sρs |i〉s〈i|s)/pi = |i〉s〈i|s s, s ′ = 1, 2 s �= s ′.

Thus, ∀i : ρi
12 = |i〉1〈i|1 ⊗ |i〉2〈i|2, hence I

(
ρi

12

) = 0, and (32a) reduces to (33) as claimed.
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To obtain the quasi-classical part Iqcl of I (ρ12), we first evaluate the subsystem entropies,
which are upper bounds for the former (cf (4a), (4b) in [3]). Since [ρs, As] = 0 (cf (4)),
ρs and As have a common eigenbasis in R(Qs), s = 1, 2. Further, the reducees A′

s

in R(Qs) are complete (cf remark 4), hence the common eigenbasis in R(Qs) is the
eigenbasis {|i〉s : ∀i} of A′. Then, if ρs = ∑

i r
s
i |i〉s〈i|s , S(ρs) = H

(
rs
i

)
. Finally,

∀i : rs
i = 〈i|sρs |i〉s = Tr ρs |i〉s〈i|s = Tr ρs

(
P i

s Qs

) = pi, s = 1, 2. Hence,

S(ρs) = H(pi) = S(As, ρ12) s = 1, 2. (34)

If one performs simultaneous measurement of (A1 ⊗ 1) and (1 ⊗ A2) on ρ12 (denoted
by (A ∧ A)), A1 and A2 being the PTO in the theorem, then one has a classical discrete
joint probability distribution pii ′ ≡ Tr[ρ12(|i〉1〈i|1 ⊗ |i ′〉2〈i ′|2)], where |i〉1〈i|1 = P i

1Q1,
|i ′〉2〈i ′|2 = P i ′

2 Q2, A1 = ∑
i aiP

i
1 + P ⊥

1 A1P
⊥
1 (cf (7)) and A2 = ∑

i ′ a
′
i ′P

i ′
2 + P ⊥

2 A2P
⊥
2 . The

probability distribution implies the mutual information

I (m1 : m2)A∧A ≡ H(pi) + H(pi ′) − H(pii ′)

where on the RHS we have the Shannon entropies H(pii ′) ≡ −∑
ii ′ pii ′ ln pii ′ , H(pi) ≡

−∑
i pi ln pi and H(pi ′) ≡ −∑

i ′ pi ′ ln pi ′ , and pi ≡ ∑
i ′ pii ′ , pi ′ ≡ ∑

i pii ′ are the marginal
probability distributions.

On account of the crucial PTO property (5a) (or rather its adjoint), it is easily seen that
pii ′ = δi,i ′pi . Hence, all three Shannon entropies equal H(pi) = S(As, ρ12), s = 1, 2, and
also

I (m1 : m2)A∧A = S(As, ρ12) s = 1, 2. (35)

On the other hand, two chains of information are valid

I (m1 : m2)A∧A � I (m1 → 2) � min{I (ρ12), S(ρ2)} (36a)

I (m1 : m2)A∧A � I (1 ← m2) � min{I (ρ12), S(ρ1)} (36b)

(cf (6b) and (7a), (7b) in [3]). Here I (m1 → 2) is the maximal information that one can
gain by measurement on subsystem 1 about subsystem 2, and I (1 ← m2) is the symmetrical
quantity. (For a more precise definition see [3].)

It is seen from (34), (35), and (36a), (36b) that we have what may be called a common
collapse of the two chains:

I (m1 : m2)A∧A = I (m1 → 2) = I (1 ← m2) = S(ρ2) = S(ρ1) = S(As, ρ12) s = 1, 2.

(37)

Following [6], [14] and [3], we define

Iqcl ≡ I (m1 → 2) = I (1 ← m2). (38)

Hence,

Iqcl = S(As, ρ12) s = 1, 2 (39)

as claimed.
Following [6], we take the quantum discord

δ(ρ12) ≡ I (ρ12) − Iqcl (40)

as the measure of entanglement in ρ12. (In [14] a different measure of entanglement is defined.
It is independent of Iqcl . It coincides with δ(ρ12) for pure states, but not for mixed states in
general.)
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In view of (40) and (39), one can conclude from (33), which has already been proved,
that

δ(ρ12) = EC(As, ρ12) s = 1, 2 (41)

as claimed. �

All pure bipartite states ρ12 = |�〉12〈�|12 are examples to which theorem 6 applies. But there
are also mixed states of this kind. To show this we need an auxiliary result.

Remark 6. If

ρ12 =
∑

k

wk|�〉k12〈�|k12 (42)

is any decomposition of a bipartite state into pure ones, then opposite-subsystem observables
A1, A2 are PTO for ρ12 if and only if they are PTO for each |�〉k12. (The detectable
eigenprojectors P i

s are algebraic twin observables, and this statement has been proved for
such observables, cf C2 in section 3 of [9].)

Remark 7. To obtain mixed states ρ12 to which theorem 6 applies, we define several bipartite
pure states via their Schmidt biorthogonal decompositions:

∀k : |�〉k12 ≡
∑

i

(
rk
i

)1/2|i〉1|i〉2 ∀k,∀i : rk
i > 0 (43)

(we take
{
rk
i : ∀i

}
distinct for different values of k). Then A1 ≡ ∑

i ai |i〉1〈i|1 and
A2 ≡ ∑

i bi |i〉2〈i|2 (ai and separately bi distinct) are PTO for each |�〉k12, in particular,
complete ones in relation to the corresponding subsystem states of |�〉k12 (because the
eigenvalues are distinct). Hence, they are complete in relation to the corresponding subsystem
states of ρ12 defined by (42) (cf remarks 6 and 4). Therefore, theorem 6 applies to this
case.

Let us return to theorem 5, where A1, A2 are PTO but not necessarily complete in relation
to ρ1, ρ2. S(As, ρ12) s = 1, 2 is certainly a part of Iqcl (as clear from the argument in the
proof of theorem 6). Hopefully, also EC(As, ρ12), s = 1, 2 is a part of the quantum discord
δ(ρ12).

8. Conclusion

Three groups of results have been obtained in this study.

(i) The concept of physical twin observables is made more practical by simplifying it in
theorem 1.

(ii) Utilizing well-known relations, a somewhat surprising general relation between the
coherence entropy EC(A, ρ) and the entropy S(A, ρ) of A in ρ was established (relation
(16), inequality (17) and figure 1). Further, it was shown that the coherence entropy
satisfies the third intuitive requirement (see the introduction and lemma 1). This property
led to another form of EC(A, ρ), in which the redundancies are omitted (theorem 2).
Finally, it was proved that if one considers a refinement A′ of A instead of the latter, the
coherence entropy cannot decrease. A sufficient and necessary condition is given for the
increase.

(iii) The case of correlation incompatibility (definition 5) comprises all bipartite pure
states and some mixed ones. The role of the coherence entropy EC(As, ρ12) of the
subsystem observable As (s = 1 or 2) at issue in the von Neumann mutual information
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I (ρ12) is investigated in this case, and three, more and more specific, results are
obtained:

(a) I (ρ12) is the sum of EC(As, ρ12) and a possible nonnegative term (theorem 4).
(b) If As is one of physical twin observables in relation to ρ12, then I (ρ12) is the sum of

the entropy S(As, ρ12) of the observable As in ρ12 and EC(As, ρ12) and a possible
nonnegative term (theorem 5).

(c) If the twin observables in (b) are complete in relation to ρ12, then the third term
mentioned in (b) is necessarily zero (theorem 6 and relation (33)). A bipartite
mixed-state example is given (remark 7).

The result in (c) may be of significance for the important problem of how to split I (ρ12)

into a quasi-classical part and a part that is the amount of purely quantum entanglement.
Namely, the term S(As, ρ12) can be pretty safely interpreted as precisely the quasi-classical
part. In [6, 14], this was defined and in both the entropy S(ρs) of the corresponding subsystem
state ρs is an upper bound for this quantity. On account of the completeness of the PTO, the
entropy S(As, ρ12) equals S(ρs); hence, having reached its upper bound, it must be the quasi-
classical part of the quantum correlations in ρ12. The quantum discord, the term in I (ρ12) that
is the excess over the quasi-classical part, is equal to EC(As, ρ12) in the case discussed. Thus,
the PTO ‘carry’ both the quasi-classical part (as their entropy in ρ12) and the quantum discord
(as their coherence entropy).

Appendix A

Proof of the equivalence of PQ = Q (Q being the range projector of ρ), cf (13), with
Tr(Pρ) = 1:
Sufficiency: Since always ρ = Qρ, one has Tr(Pρ) = Tr[P(Qρ)] = Tr(Qρ) = Tr ρ = 1.
Necessity: Let ρ = ∑

n rn|n〉〈n| be a spectral form of ρ with positive eigenvalues. Then,
on account of (6), Tr(Pρ) = 1 amounts to P

[ ∑
n(rn|n〉〈n|)] = ∑

n(rn|n〉〈n|). Multiplying
this from the right by |n′〉〈n′| with a fixed n′ value, taking the trace and dividing by rn′ , one
obtains Tr(P |n′〉〈n′|) = 1. Utilizing (6) again, one has P |n′〉〈n′| = |n′〉〈n′|. Finally, since
Q = ∑

n′ |n′〉〈n′|, the claimed relation (13) ensues.

Appendix B

Proof of the claim that if the density operator ρ is nonsingular, then only the zero event P = 0
has zero probability in ρ:

Tr(Pρ) = 0 ⇒ Tr(P ⊥ρ) = 1 ⇒ P ⊥Q = Q

(cf appendix A). But now Q = 1. Hence, P ⊥ = 1, and P = 0.
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